

JB-003-001617

Seat No.

B. Sc. (Sem. VI) (CBCS) Examination

August - 2019

Mathematics: BSMT - 602 (A) (Analysis - II & Abstract Algebra - II)

Faculty Code: 003 Subject Code: 001617

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

- (2) Figures to the right indicate full marks of the question.
- 1 Answers the following questions in short:

20

- (1) How many units in the $(\mathbb{Z}_{10}, +_{10}, \times_{10})$? List them.
- (2) What is the multiplicative inverse of 3 in $(\mathbb{Z}_5, +_5, \times_5)$?
- (3) List all the ideals of the ring $(\mathbb{Q}, +, \cdot)$.
- (4) Let $f: G \to G$; $f(g) = g(g \in G)$ be a group homomorphism. Find ker f.
- (5) True or False: Every integral domain is a field.
- (6) True or False : [0,1) is a connected subset of $\mathbb R$.
- (7) Give an example of a sequentially compact metric space.
- (8) Give an example of a non-commutative ring with unity.

1

- (9) If f = (2, -1, 0, 11, 0, 0, 0, ...) and g = (-1, 8, 2, -2, 0, 0, 0, ...), then find f + g.
- (10) Find $L(t^3)$.
- (11) Find $L^{-1} \left(\frac{s^2 3s + 4}{s^3} \right)$

JB-003-001617]

[Contd....

- (12) Find convolution product of $f(t) = \sin t$ and g(t) = t.
- (13) Find $L^{-1}\left(\frac{1}{s-3}\right)$.
- (14) State First Shifting Theorem for Laplace Transform.
- (15) Define: Sequentially Compact.
- (16) Define: Group homomorphism.
- (17) Define: Countable set.
- (18) Define: Compact set.
- (19) Define: Integral domain.
- (20) Define: Ideal.

2 (A) Attempt any three:

- 6
- (1) Show that (0,1] is not a compact subset of $\mathbb R$.
- (2) Give an example of a closed subset of \mathbb{R} which is not compact.
- (3) Show that \mathbb{R} is not a sequentially compact.
- (4) Show that $\{1,2,3\}$ is a compact subset of \mathbb{R} .
- (5) Find Laplace transform of $f(t) = \begin{cases} 3 & 0 < t < 5 \\ 0 & t > 5. \end{cases}$
- (6) Find $L^{-1}(F(s))$. Where $F(s) = \log \frac{s+a}{s+b}$

(B) Attempt any three:

- 9
- (1) Prove that every totally bounded subset of a metric space is bounded.
- (2) Show that \mathbb{Z} is countable.
- (3) Show that every compact subset of a metric space is bounded.
- (4) Prove that continuous image of a compact set is compact.
- (5) Find Laplace transform of $f(t) = (\sin 2t \cos 2t)^2$.
- (6) Find inverse Laplace transform of

$$F(s) = \frac{3s+7}{s^2 - 2s - 3}.$$

JB-003-001617]

(C) Attempt any two:

- 10
- (1) State and prove Heine-Borel Theorem for \mathbb{R} .
- (2) State and prove Convolution Theorem.
- (3) Prove that every compact subset of a metric space (X,d) is closed.
- (4) Prove that continuous image of a connected set is connected.
- (5) Evaluate $\int_0^\infty e^{-2t} \sin^3 t \ dt.$
- 3 (A) Attempt any three:

6

- (1) Does union of two subrings of a ring is a subring of the ring? Justify.
- (2) Show that in an integral domain 0 and 1 are the only idempotent elements.
- (3) Show that $\mathbb{Z}\Big[\sqrt{2}\Big] = \Big\{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\Big\}$ is not a field under usual addition and multiplication.
- (4) Let $\mathbb{Q}\left[\sqrt{2}\right] = \left\{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\right\}$ is a ring under usual addition and multiplication. Find inverse of $-1 + 2\sqrt{2}$ in $\mathbb{Q}\left[\sqrt{2}\right]$.
- (5) Does $S = \{A \in M_2(\mathbb{R}) \mid \det(A) = 0\}$ is a subring of $(M_2(\mathbb{R}), +, \cdot)$? Justify.
- (6) Does $(M_2(\mathbb{Z}),+,\cdot)$ the ring of matrices is an integral domain? Justify.
- (B) Attempt any three:

9

- (1) Let $f: G \to \overline{G}$ be a group homomorphism. Show that f is one-one iff $\ker f = \{e\}$.
- (2) Prove that intersection of two ideals of a ring is also an ideal of the ring.

- (3) Let R be a commutative ring and $a \in R$. Show that $A = \{x \in R \mid ax = 0\}$ is an ideal in R.
- (4) Show that $(\mathbb{Z},+,\cdot)$ is a principal ideal ring.
- (5) Show that the polynomial $f(x) = 8x^3 + 6x^2 9x + 24 \text{ is irreducible over } \mathbb{O}.$
- (6) Prove that the characteristic of an integral domain is 0 or prime.

(C) Attempt any two:

10

- (1) State and prove Fundamental Theorem of group homomorphism.
- (2) Prove that every finite integral domain is a field.
- (3) Prove that field has no proper ideal.
- (4) If F is a field, then show that F[x] is never a field.
- (5) State and prove division algorithm in F[x], where F is a field.